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I. SUNMARY

A. PURPOSE AND SCOPE

In this report we discuss the problem of designing optimum signals
and receivers for an active sonar system operating in an environment in which
the principal cause of interference is reverberation. We have considered only
the problem of target detection (as opposed to the problem of range or Doppler
estimation).

In many sonar systems the primary limitation on performance is
energy scattered back to the receiver from various objects in the ocean. If the
scattering structure were known in detail, the reverberation could be treated as
a deterministic return and the signal and receiver designed to eliminate it. Be-
cause of variations in the ocean, however, this type of model quickly becomes
unrealistic or unmanageable. For this reason, we chose an alternate approach
in which the reverberation return is treated as a random process. Characteriz-
ing the reverberation as such a process enabled us to consider alarge number of
scatterers efficiently and to attempt to design signals and receivers which will
work well on the average.

First, we constructed a suitable statistical model of the random re-
verberation return. Starting from physical considerations, we showed that the
return can be reasonably characterized as a zero-mean non-stationary Gaussian
random process. The correlation function of the process, which is a function of
the transmitted signal and distribution of the scatterers in range, is assumed to
be known.

Once this model was obtained, the conceptual path to the optimum re-
ceiver was clear, and we developed the equations which specify theoptimum re-
ceiver. The parameters in the optimum receiver depend on the structure of the
reverberation. The resulting receiver may be complex; frequently, therefore, a
simpler, sub-optimum receiver is used, e.g., one which ignores the reverbera-
tion and assumes the additive noise is white. In this case, the receiver consists
of a filter whose impulse response is the signal reversed in time, a detector,
and a threshold device. This type of receiver is a conventional matched filter
receiver. We have given expressions for the performance of the optimum and
the conventional receiver for arbitary signal shapes and reverberation charac-
teristics.

We also considered the signal design problem. We derived some
general properties that are useful in choosing a suitable fcrm for the transmit-
ted signal.

Arthur B Aittle. Inc.
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To obtain a quantitative indication of the performance levels that can
be achieved using various signal shapes and optimum or conventional receivers,
we considered two cases in detail: (1) 1everberation which is homogeneous in
range and results in interference which is a stationary Gaussian process, (2)
reverberation which is non-homogeneous in range and results in a non-stationary
Gaussian process. In both cases we were concerned principally with a transmit-
ted signal having a Gaussian envelope and linear frequency modulation.

B. CONCLUSIONS AND RECOMMENDATIONS

1. The most effective way (within the limitations of our model) to
combat reverberation is through proper signal design. In fact, proper signail
design is more important than optimum receiver design.

2. The evaluation of the performance of the conventional receiver
for arbitrary signal shapes and reverberation characteristics is a straightfor-
ward calculation. Finding the optimum receiver for arbitrary signals, however,
appears both difficult and unrewarding.

3. In many cases, the best signal will not be a Gaussian pulse. The
performance achieved using pseudo-random waveforms and simple pulse trains
should ke evaluated. (Sec References 14 and 15 for some examples.)

4. In some zases, the optimum receiver will offer enough improve-
ment to warrant its complexity. To implement it, one needs to know the statis-
tical structure of the reverberation and thus needs some means of measurement.
Considerable research has been devoted to the related measurement problem in
a radar astronomy and communications context. Presumably, some of these
results should be adaptable to the reverberation problem.

5. In most cases, the scattering function of the reverberation will
vary slowly with time. An ideal system should have provision for continually
measuring the scattering function and adapting the transmitted signal shape and
receiver to the current environment.

6. We have considered only detectability and time processing. The
problems of parameter measurement (such as range and Doppler) and the space-
time problem should also be considered.

Avthur 8. Yittle. Inc.
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11, INTRODUCTION

In the simplest detection problem, the signal returned from the target
is completely known. Ia this case, the receiver has available for processing a
waveform which consists of either ambient noise, if no target is present, or of
ambient noise plus the target return signa’ if a target is present. The detection
problem consists solely of deciding which of the two alternatives is correct.
The simplest example of this case occurs when the ambient noise is a sample

function from a white, Gaussian random process (spectral heightj-\lzﬂ voltsz/cps)

which is independent from the signal. It is well known? that in this case,
the optimum processor is either a correlation receiver or a matched filter

receiver and that the performance depends only on the ratio E/No (where E is
the energy in the signal).

Two characteristics of this solution are of interest to us. First, the
performance is completely independent of the signal shape. Any signal with a
given amount of energy is as good as any other. Second, one can achieve any
desired performance level by increasing the transmitted signal energyto a large
enough value. We shall see, however, that this simple model does not adequately

describe the active sonai problem and that these two characteristics cannot be
achieved in an actual situation.

When a signal is transmitted into the ocean, it encounters various
inhomogeneities in the medium and rnumerous objects which cause it to be scat-
tered. The return from these various sources is called reverberation. (In
Section III, we shall coastruct a quantitative model of thi ; reverberation return.)
Since the reverberation return is caused by the signal, it is clear that the statis-
tical characteristics of the reverberation "noice” are not independent of the sig-
nal shape. One would suspect, therefore, that the receiver performance will no
longer be independent of the signal shape. Moreover, increasing the transmitted
signal power will increase the level of the reverberation return. Thus, increas-
ing the transmitted energy may be an inefficient way to combat reverberation.

The problem here is one of target detection in the presence of inter-
ference which depends on the transmitted signal. The basic ideas involved in
our solution are reasonably straighitforward, but the manipulations necessary to
obtain a quantitative solution are some-hat involved. To illustrate some of the
basic concepts involved, we will consider a simple example of target detection
in the presence of interference. The model dees not represent a realistic
scnar problem, but is only a tutorial examp:>.

fWe assume that the reader is familiar with the application of statistical detec-
tinn theory to receivers operating in an additive Gaussian noise environment.

Arthur B.Xistle. Inc.
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Consider the simple problem shown in Figure 1. The signal returned
from the target is S3(t). The signal returned from the interfering object is
S1(t). In addition, an additive, ambient noise n(t) is present. The received
waveform is a sum of these three terms.

r(t) = Sd(t) + SI(t) + n(t) (1-1)

As a special case, let us assume that Sy(t) is identical to Sq(t) except
for a time delay and an attenuation.

Thus,

S (1) = aS,(t - T) (11-2)

where T is assumed known. If, in addition, the value of "a" is known, the solu-
tion is simple. One subtracts out the interfering signal and then uses the usual
matched filter receiver. The receiver structure for this simpie case is shown
in Figure 2. To make the problem more realistic, we must include some uncer-
taiaty to the interfering signat. Therefore, we assume that the attenuation is a
Gaussian random variable with zcro-mean and variance, Og .

We now have a familiar iwo-hypothesis problem.

Under H(, no signal present, the mean of r(t) is zero and the covar-
iance function is:

N
R(t,u) = Er(®)ru)] = —§°— 5(tu) + 03 §4(t-7)S,(u-T) (11-3)

where we assume the additive noise is 3 sambple function from a Gaussian process.

Under Hl’ signal present, the mean of r(t)is Sd(t) and the covariance

function is unchanged.

# This example is based on a similar example in an unpublished memorandum
by W. M, Siebert.

Arthur D Aittle Inc.
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The optimum detector consists of a correlation operation on the
received signal r(t)

X = f r(t) q(t)dt (11-4)
0

where q(t) is the solution to the integral equation:

T
q (1) =j Q(tu)S (Wydu 0<t<T (11-5)

0

and the function Q(t, u) is the "inverse kernel” and satisfied the equation:
I}
8(t-z) = .‘l Q(t,u) R(u,z)du (11-6)
0

This solution is just a special case of the nonwhite noise problem.

One can verify by direct substitution into Equation II-6 that

-]
2 2 Ca \
= —— -u) - -7 - -7
Q(Lu) = g— 50 - g g S (t-7YS (u-T) (1-7)
(] [o] 6] EE
3t %%

Then. substituting Equation 1I-7 into Equation [I-3, we obtain:

2

2 2 ca T

q(t) = N Sd(t) " SEE I N Sd(L-T) i Sd(u)Sd(u-x Ydu
o o a _© G
2

’~2

= i S (t)-Ev ,(7) _5..._.-.___Va S, (t-7) (I1-8)
1\'0 d Cdi aa E + No d

2
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where

j' 5 (WS, (u-T du
E

Ydi(T) = (11-9)

represents a normalized correlation between the desired signal and the interfer-
ing signal. Clearly, 0s Ydi(‘r) <1.

The optimum receiver consists of two parts, as shown in Figure 3.
One part is the usual correlation operation; the second part is a partial subtrac-
tion of the interfering signal.

Sd (1) 2/Ng
T
-
)
|
r(t) * DECISION
1SI
O— DEVICE
+
T
- fo
0
S4(t-T) Og
d - " E Kdi {T)
o+ 2
e 2
FIGURE 3 OPTIMUM RECEIVER: INTERFERING TARGET
WITH RANDOM AMPLITUDE
7
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The optimum receiver has a very good intuitive interpretation. In
Figure Z, we saw that if the interfering signai were known exactiy, we couid
subtract it out. A logical approach in the presence of some uncertainty might
be to look at the received waveform r(t) and estimate what the interfering signal
is. We could then subtract this estimate and pass the result into the normal
white noise detector. We will now demonstrate that this logical approach is
exactly what the ¢ptimum receiver is doing.

The only unknown quantity in the interfering sigral is the amplitude
"a"”. One can show that if the received waveform is

r(t) = an(t—T) + n(t), (11-10)

then the most probable value of "a" and the minimum variance estimate of "a”
are identical. The estimate, a, is given by

oz T
a= N +ciE J r(u) Sd(u-T)du (11-11)
9 0
2

The equation describing the receiver shown in Figure 4 is:

X = ]— [r()-a Sd(t-“r )] Sd(t) dt (11-12)
0

Substituting Equation II-11 into Equation II-12, we obtain:

o? vy T
2 f 2 % Yai (1) )
X =g— | r@®S,md - o < J r(u)S (u-7)du (I1-13)
° 0 ° 240%E O

We see that the two receivers are equivalent. Thus, the optimum
receiver does exactly what one might expect.

A complete measure of performance is the ratio of the square of the
mean of X under hypothesis H_ to the variance of X.

1
Thus. . -
2 tE[X:H1 1]
o Var X (I1-14)

Arthur O Xittle. Inc.
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One can show that

3 2E P -‘-;« 02a
Ao~ (' Ya )" (11-15)
o 1 4+ — 0o°
No a

We observe that the first term is simply the usual white noise result.
The second term represents the degradation due to the interfering signal. The

magnitude of this degradation depends on:

1. Yzi (7): the correlation (or similarity) between the desired
signal and the interfering signal.

2. c: : the strength of the interfering signal
2E . . .
3. w the energy-to-noise-density ratio.
)

If any of these are small, the eifect of the interfering signal will be small. The
siagnal design problem in this case is simply choosing a signai shape so that
v5. (T) is small. For fixed T and no constraint on peak transmitter power,

the solution is simple.

Let
2/E T
Sd (t) = - 0< t < 7 (I1-16)
0 Elsewhere

In general, for the cases of interest, the solution will be more com-

plicated.

Now, let us assume that the designer is unaware of or chooses to
ignore the interfering target. He would then use a conventional matched filter

which is now nonoptimum. One can verify easily that

1

£ - 2E_ : (11-17)
c N 1+y.2(T) 2E g2
o di N a
10
Arthur O Xittle. Inc.
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ference.” Taking the log of Equation II-15, we have:

It ic convenient to compute a quantity, "the degradation ci

2
2 s
2E 2 NO a
log dz0 = log ~ + log| 1 - Ydi (T) —F 5 (11-18)
o 1+ c

Since the first term is caused by white noise, the degradation due to
interference is just the magnitude of the second term.

Similarly, from Equation II-17,
2 _ 2E _ ) . 2E _a )
log dC = log N; log [1 + Ydi (7) N oa ] (11-19)

The degradation for the conventional and optimum receiver cases is
shown in Figure S.

We observe that in both the good performance region (v® ~0) and the
bad performance region (Y2 -1), the optimum receiver is not much better than
the conventional receiver. We can see that this result is intuitively logical by
looking at Equation II-8.

As v? = 0, the coefficient of the second term approaches zero.
Physicaily, ¥® = 0 means that the desired signal and the interfering signal
are orthogonal. Thus, the interfering signal causes no outpu: in the correlation

I N T TR SN

and there is no reason to modify the detector.

more and more like the original term. 1n the limit, v? =1,S d(t-'\’) =95 cl(t)

and no modification is necessary.

Cally Thesndphd Byerine Lo

This simple example illustrates many of the important features of the
actual reverberation problem. We may summarize these briefly:

1. The optimum detector tries to subtract out the interfering
signal. Since it does not know the signal, it uses the
received waveform to estimate the interfering signai and
then subtracts out this estimate.
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detector. Clearly, a signal that causes no output cannot affect the performance,

At the other extreme, as Y- = 1, the modifying term, Sg4(t-7), looks

ZActhur D Nittle.Inc.
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2. The choice of signais affecis the performance appreciabiy.
The goal of the signal designer is simple to state: make the
signal returned from the desired target orthogonal to all of
the interference., We will see that in most realistic situa-

tions, as we would expect, this is difficult to do.

To design an optimum detector, requires some knowledge
of rhe interfering signal. In this simple case, we knew the
shape and the probability density of the amplitude. We
would expect that as knewledge of the interference decreased,
the improvement gained would decrecase, In many cases,
because of a lack of knowledge or in order to simplify the
resulting equipment, one uses a "conventional" receiver.
We observed that for certain parameter ranges there was
not too much difference between the conventional and the
optimum receiver. We will find tat in many cases of
interest proper signal design is much more important

than the difference between a conventional and an optimum
receiver,

B. PROBLEM FORMULATION

There are important differences between the simple problem discussed
above and the reverberation problem:

1. Instead of one interfering target, there is a large number
of interfering returns from reflecting objects.

2. The returned signal from the target is a band-pass

waveform. It has a random phase angle which must be
taken into account.

We shall see that these differences take us from a tutorial exercise
to a reasonably good model of an active sonar in a reverberation environment.
The cost of this transition is a great increase in the complexity of the calcula-

tions. It is important to emphasize that the concepts in an actual sonar problem
are identical to those in the preceding example.

Our model of the reverberation problem is shown in Figure 6.

13
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FIGURE 6 CHANNEL MODEL

The transmitted signal is:

ot i (t Wt
5. (1) = Relf(e € | = Re| u®e®@e € | = u@)cos@ t + o) (11-20)
T c

where:

f(t)
u(t)

is the complex envelope

f

is the actual envelope

@ (t) is the phase

# For a discussion of the complex representation, see Woodward (Reference 1)
and Helstrom (Reference 2).
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The returned signal R(t) = Re ln"(t)e consists of the following three parts:

The reverberation return due to the collection of nonstationary
scatterers:
j.uct
NR(t) = Re nr(t)e (11-21)

SRR SRR sl e s
)

The return due to additive Gaussian noise:

N

ot
N, () = Re [na(t)e ¢ ] (11-22)

3. The return due to a target. This is an attenuated and phase-
<hifted replica of the transmirted signal.
+j8+j»ct+jw t

ARe| £(-T Je D (11-23)

ahle 5 e’ e Miade - ol PR

i are always present. The third part is only present if a target is present.

As before, we are concerned with deciding whether or not a target is
present. In other words, we want to decide between one of two hypotheses:

o

HO (no target): ro(t) = nr(t) + na(t)

jw, t + i8
Hl (target present). r(t)=f (t- TD)e + nr(t) + na(t)

X0 whe 2e by G 0 0

If n (t) is a complex Gaussian process, the solution to the problem
can be expressed in terms of an integrai equation. Assumingthe integral equa-
tion can be solved, one can then construct the optimum receiver.

AN R s

15 %
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I, MODEL FOR NON-UNIFORM SCATTERERS

In this section, we develop a model for the reverberation return,

Our approach is a genexalization of that in Reference 3 (more readily
available References are 4 and 53%.

The transmitted signal is:

jw t
St = Re[f(t)e v ] (II-1)

We are concerned with f (t) the compiex envelope.
T = wye®W (111-2)

. aeca th
The complex envelope returned from an individua' scatterer (the n
scatterer) is:

| S

< = - ~! - -
Sn(t) Zne f {t tn) {i11-3)

where:

Z is a complex aumber which is the magnitude and phase of
the echo {i.e., 'strength” of echo),

wn is the Doppler shift due tc the radial volecity of the n
scatterer, and

. - th
tn is rthe delay due tc the position of the n~ scatrerer.

The entire complex envelope due to reverberation is:

ot
nr(t) = Z Ze fqt- tn) (i11-4)

all scatterers

We make the following assumptions regarding the scatterers:

16
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Assumption !

The distribution along the path obeys a non-homogeneous Poisson law,

(See Reference 6.)

The probability that a scatterer exists in the time interval. It is:
Pr [1 event, t <t<t ] =a(t_)dt (I11-5)
a a a

All of the properties of a stationary or homogeneous process can be
exterded easily to a non-homogeneous process. The two properties that we will

tise are: T n T
( j a(x)dx} exp- ‘[ a {x)dx
-T T

Property I Pr(n events in interval [-T,T]) = —

(111-6)

Property II: Given that n events occur in the interval [-T,T], the joint
probability density of their occurrence times is given by the expression

t., toyeonst I [t,t,...,t ] =
12 %1 1 events in(-'l",'I')1 2 n

- Tl — a(t)a).....a() (I1-7)
Lf a(x)dx]
-T

Assumption 2

The velocity of each scatterer is a random variable. Velocities of
different scatterers are independent random variables.

The probability density governing the scatterer velocity is time
dependent. The probability that a scatterer occurs in the interval[t , € +dto;]

and has a velocity (frequency shift)in the range (m , W 4 dw ] can
. . . 17 1 i
described by a joint density,
P (t., 2 )=p (w!t)p(t)sp (w:t) - a('a) {I11-8)
t,w a1 et tal ttta wheV'1 I :
f a{ryax
-T
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Assumntion 3

different scatterers are independent random variables. The strength is independ-
eat of both position and velocity., We denote this probability density by:

The strength of each scatterer is a random variable  Strengths of

pz1 (2} = p, (2) = (2 (111-9)

... D
2 Zn

Using these three assumptions, we want to find the correlation function
of the reverberation return. For simplicity, we will assume E [Z,] = 0.f

Th2 coemplex envelope of the returned reverberation signal is:
N "° wot

nr (t) = Zm e f(t- tm) (111-10)
m=0
Then, the correlation function is:

~ ~ ~ %

R(t,t,) = %< r()r (;)> (11-11)

An easy way to find this is to assume there were n scatterers in the
interval (-T,T). If we denote the conditional correlation function based on this
assumption by Rn (ta, t,), then:

R (ta’ts) = ZO Rn(ta’ ts) - Pr [n events in (-T,T) ] (111-12)
n =

Using Equation III-6, this reduces to:

[fTa(x)dx]n exp - fTa(x)dx
) -T J-

~ L d . T
R(ta’ti) = Z Rn(ta’té "y (111-13)
n=0

# We use the symbol E to denote the expectation of a rand~m variable.

18
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Now we find R (t .t )
ma

(& ¥)

Using Equation 1ii-7 through iii-ii, we may wriié:

T T
Rn(ta’te) =% —T—l—-——ﬁ dtl...dtna(tl)...a(tn)
U a(x)dx]
-T

T -T
oo P, wet)p )
J ! wl'tl Py e @ st ydu L de

f.fpz (Z) ...p, (Z)dZ ...dZ_
1 n
- -

n

+iw (t -t) -jw (t.-t)
Tte o3 T 0 ia i k'8 k
ZiZk f (ta ti) f (t8 tk)e e

[
]
[
-~
1t
Yot

Several observations simplify this expression:

2
1 \ * = =
1. ff P @) Pz, @y 2zt =El 2]  i=k
o 0 ifk
This reduces the double summation to a single summation.
2. Fori =k, the exponential terms reduce to:

+jw -t +j0. T
Ji(tOL N . e

n

(where 7 = ta-ts)

(111-14)

(I11-15)

(II1-16)

# This approach is similar tc Sec. 7-4 in Reference 7. This section follows the

originai work of Rice (Reference 3S).
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Now consider the term in the series for i = q. After performing the

integration with respect to Z_, the multiple iategrai becomes:
9

T T
o n /...[dt...dt
f a(x)dx ./ ! q
-T -T -

T

%

ldtq+l .. .dtrl a(tl). . .a(tq_l)a(tq+l). . .a(tn)

x x

..Ip w.:t)...p (v it )p
ff .ul‘tl 11 ”q-l‘tq-l q-1"g-1"%y

o
[ q+11tq+l

diq+1:tq+1)

..p‘U [t (wn:tn) d»zl. . 'dwq-ldwqﬂ" .dun

.dp, (Z)...p (z_p (z )...p, (Z2)zZ ...d dZz ....dZ
-! ! A A A A S B

+ju T
fa(t xe (e, . @ |t)ds - E{iz ]2}?« ) -t)e 3 @m-17)
9 q ) "wjt Tald g iqt f "o g T8 q

-~ -l

The integrals with respect to variables other than tq and '.uq are straightforward.

We observe that the integral with respect to '+ _is in the form of a condi-
tional characteristic function: 9

@

+]1)07
M (z:it) = fp (v |t e - du (111-18)
Lt Lt
aq 1 = ql q ¥1 d

Assuming that T is large, we can neglect end =ffects.

Since eachterm in the sum is the same, we have:

T
~ an E[! 21*] / ~ -
R (t,t)=% — at )M (t_-t_t ) f (t_-t )f (t,-t ) (II-19)
na 2 H ., g &t 32 2 g 2 g 2 g
a(x)dx ‘T q g

-T
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ral hy 1 (g ,to). Suhstitutir g Equartion ITI-15 into Equation III-9,

R(t ) =% Z U f : "=l ] = (111-20)
f a(x)dx
-T

This reduces te:

| ()d]
f - (111-21)

~ 2 T
R(ta’ts) =% E[:Z!"] I(ta,ts) exp - [T at(x)dxzr1 Y

We observe that the sum cancels the exponential term preceding it.
Equation '11-21 becomes:

~ 2
R(.tg) = 2 E[[Z!7] I ,t) (111-22)
where
T ~ ~
1.ty = /T a (x) qu:x(ta-te:x) f@t X £ (%) dx (111-23)

Equation III-23 is valid for the case defined by the original assumptions,
and it can be written in several diifferent ways. The two-dimensional correlation

function of a signal is defined to be: #

8, (1) =f?'(t DT+ e Mar (IT1~24)
or .
4
f(t-—) T+ ) ~ fe (r,w) e ay {II1-25)
2n 2 1
By letting
t g
t=————-x,7=t_-t , Equation IlI-25 becomes:
2 g8 a

¥ See, e.g., Woodward (Reference 1) or Siebert (Reference 9).
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1 [
-x) = —— 5 (.-t ;w)e
a 8 2m J 1(8 a ) (I111-26)

Substituting Equation I1T-26 into Equation II-22, we have:

{ 1 Z“‘ i tc,+ tB
R(t ,t ) a(x) Mw .x(ra-te:x) ‘31(t8 -ta W) exp +jw - X} dw
q

2
(111-27)
But /a x) M (t -t _:x) e-ijdx =S(-w;t -t) (II1-28)
w:x'a B8 a 8
q
where
+]v +]V2 2
S =
(v, fj P, 0%, dx,
[the characteristic fctn. of ]
the joint density (IT11-29)

2 t+t
R (t t)-é M[S(-w,. -t)9 (t -t w)exp+w( 7 8)dw

(111-30)

The total interfering noise is the sum of the reverberation noise and the
ambient noise.

The total correlation function is:"

) (I111-31)

~ - 6 - +~
Rr(ta’ tS) No (ta tB) Rnr(ta’ tB

For a large number of scatterers, one can show that the interfering
noise approaches a non-stationary Gaussian process." 4

# We assume the ambient noise is a real white Gaussian process with double-
sided spectral height Ny/2.
#/ The technique is similar to that of Reference 4.
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The simplest case is when the distribution ir range of the scatterers
is uniform and the velocity density is uniform,

Let the
a(x) = vy -T<x<T (111-32)

Physically, v is the number of scatterers per unit interval (time). Now let
T=e,

Then, from Equations II1-22 and HI-23

+ @
~ - 2 ~
Ree 1) =3 vE[|Zl ]qu(ca- ty) / f( -0 (-xdx  (I11-33)

or

letting u = ta - X
T tcx ) tB
we have:

4+

~ C 2. ~ ~
R(M=%vE[ 2! ]Mw (T)[f(u) f (u+T)du (111-34)
q x©

But the integral is just Rf(T)

~ ~ ~H

R (1) = f f(u) T (u+7)du (I11-35)
Then,
~ _ 2 ~ - _ ~ _
R“rm =% vE[]| 2zl ]qu('r) R(7) = % L, qu(-) R.(7) (II1-36)

Cur principal results in this section are Equation III-30, the correlation
function for the reverberation return for the case of non-uniform distribution in

range of the scatterers, and Equation I[I-36, the correlation function for the rever-

beration return for the case of uniform distribution in range of the scatterers.
Since the process is Gaussian it is completely characterized by its correlation

function. In the next section, we use this to develop the optimum receiver structure.
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In this section, we derive some general results regarding receiver
structure and performance that we will need for our specific problem.

A. STRUCTURE{f

We first derive the structure of the optimum receiver and the conven-
tional receiver. Then, we find expressions for their performance.

As pointed out in the introduction, the optimum receiver solves the
hypothesis testing problem. One can demonstrate that for many interesting
criteria (e.g., Bayes, Neyman - Pearson, Minimax) the solution reduces to one
of forming the likelihood ratio and comparing it with a threshold.# The value of
the threshold will depend on the decision criterion and relative costs. We will
not concern ourselves with choosing a specific value of the threshold but only
with forming the test statistic.

We are concerned with detecting a signal which is a member of the
ensemble S(t,8), where:

_ g ot
S(t,8) = Re sd(t)eJ e (IV-1)
where ps(S) = —2%_—' 0<3<m (IV-2)
5 ot
and 5,0 = Af(t-Tg) e (1v-3)

To form the likelihood ratio, we expand the complex envelope r(t)
using a Karhunen- Loeve expansion. /7

¢ Helstrom (Reference 2), Chapter 3.

77 See Reference 7, Chapter 6.
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. The orthonormal functions of this expansion are the eigenfunctions of
:  the integral equation:

T
Anfnlta) = f ﬁr (tq, 13) @n(ta) dts (IV-4)
-T 0

where ﬁr (ty.ta) is the complex covariance of r,(t).
o 2

'x‘iro (tyty) =5 E ['f"o(ta) ot (ta)] (1v-5)
Then,

Ty = 2, T, 0n(®) (IV-6)

~ T~ *

r = f r(t) ¢ (t) dt = x, +j y, {tv-7)

-T

We now want to find the statistics of x;, and y, under the two hypotheses.

Under the nio-target condition (hypothesis HO), the complex envelope of
the received signal is

r (t) = nr(t) +n () (Iv-8)

Under the target present condition (hypothesis Hl)’ it is

g

~

r,@® =5 d(t)ej° + 0@ +n @ (IV-9)

- s

Clearly, X, and y, are Gaussian random variables under either hypothesis.

Under hypothesis H,

E [xn] - E [yn] =0 (IV-10)

25
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while under hypothesis H;,

PR

T . .
E[xnﬂ'yn] = E[rn] = E f§d(t)e18 : on(t)d}=snels (IV-11)

-T

where

1}

T
: S Jr S, © 0, dt (Iv-12)
-T

The covariances are independent of the hypothesis and are:

T T
f du f dv E [ TWET (v)] (b; (u) % v)
-T -T

E [(rn - Tn) (r;‘n - T"m)] E

T ~T
2 f du J dv Rro(u, v) Qn (uv) @m(v) (IV-15)

-T  -T

Using Equation 1V-4, we have:

T
E[(rn-fn)(rr‘n-"f‘m)]= 2xmf du <,Dn(u) Q)m(u) = 2%m5nm (IV-16)
-T

Similarly, using the properties of the expansion, we have:
. E[rr ]=o (TV-17)
n m

- - + - -
Since r =x +tjy (1v-18)
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r Q2 r ~
; , 2 -X ) -x* =% & : v -y -y =5 ¢ Iv-16;
we have E l'(xn X ) xm)J omi E L(;n LD )m)J o
- - = Iv-20
and E [(xn xn) (Ym Ym)] 0 ( )

Therefore, the x, and y, are statisticaliy independent random vari-
ables. Now write the likelikood ratio:

p(t| H))
AN = e~ (Iv-21)
p(r | HO)
Now
2n K K (x_-E(x))’+(y_-E(y )
- 1 n n n n
- ! - 1v-22
pE I H) f pE)ae| 1T 5 o - D 5 (1v-22)
v i=1 n=1 n
or
2
K K j8
2n ,r -s e |
~ 1 n n
. = —— i - - IV"'23
FlH) f P(e) 1U12“M P BZ_; N (1v-23)
n
o
and
K K 2
T
~ Y 1
P(rlHG) = ﬂ . | P - Z Lp%l— (Iv-24)
i=1 : n=1 n
We have:
2 K 2Rers‘r e'JB]- s \2
1 L nn n =
A= — d3exp + Z > (IV-25)
2 24
0 n=1 n
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Nou: define

K s't
e . nn 7.
AK“’ = ZI, X-—-——-n (1V-26)

where Ay is real and positive.

Then, we may write;

2r K g 2
no=| L 1 dd exp - { A, cos (&- 3)} exp - 7 | i__n_L_ (1v-27)
7 j p Fs K COs o} g eXp 41‘ 2)\n yA
o =

But the e riression in the bracket is just 1 o (AK) where 1 o isa modified Bessel
function of the firs: kind and order zero. That is

Now 15(-) is monotone for positive and negative arguments and >ym-
metric around the orizin. Letting X = ®, we see that an adequate statistic is:

_ K s*% rT
Ifmm Z )n L J 3% @ T( dt (IV-28)
Koo | & % | I

where q” (t) is the solution to thz integral equation.

T
S ) = f R {t,.t) q~(ts) dt, (IV-29)
o
=T

The secound term in Equation IV-27 is incorporated into the threshold.
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The desired ootimum operations are shown in F‘igur 7. The desgired

= a - BRSSO 8 L e 2 R AN

operations can be realized physically by passing r(tj through a parrow-band
filter wiiose compiex impuise response 1s

-
—~
-3
-
1]

~y s
T'T -T<T< Fy
opt q ( )

~

h  (T) elsewhere (1v-30)
opt

1
)

and detecting the output envelope. This reaiization is showr in Figure §.
We now want to consider three cases:

1. The scatterers are uniform in range. This leads to 4

stationary process for nr(t) (see Equation IV-36). One
solves Equation IV-29 to find the optiraum receiver.

2. The scatterers are non-uniform in range. This leads to

a non-stationary process for nT(t). One solves Equa-
tion JV-29 to find the optimum receiver.

3. The reverberation return is ignored in finding the opti-
mum receiver. We assume:

R = J 5 -% I .
Rr (ta’ta) Ivo (ta LS) (1v-31)
(o]
Then,
T = — 5. (1V-32)
9 a No d a

This is called a conventional receiver. We then investi-
gate the performance of the conventional receiver for non-
uniform and uniform scatterer distributions.

In the next section, we consider cases {1) and (3).
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B. PERFORMANCE OF OPTIMUM RECEIVER/Y

Our decision is based on comparing the magnitude of A with some
threshold io.

We must consider the statistics of 1A} under hypothesis Hg and
hypothesis H;j.

Pr [False Alarm ] =[ po(A) dA =P

F
f‘.o

Now

A = | x + jy |
where

r
x = Re f 3@ r dt
-"I‘

and

T
vy = Im f 3% () ‘r"o(t) de
-T

' * A 2
Var x = Vary = J q () E'd(t) dt = do

-T
and
A
, i
PJ(A) =5e
d
0

(Iv-33)

(1v-34)

(1V-35)

(Iv-36)

(v-37)

(1iV-38)

¢ Our derivation is rather sketchy. The details are on pp. 149-156 of Helstrom

(Reference 2).
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Similarly, one can show, under hypothesis Hl’ that

cos 3

3
i
o

[4 )

2
d sin
o)

<l
]

and the probability of detection is:

I )
Pr [detecnon] = Q(do, 59- y = PD

where Q(a,b) is Marcum's Q function. (See References 8, 11, and 12.)

(x2+az)
Q(a,b) = /x exp - — Io(ax) dx
Observe that from Equations IV-39 and IV-42, we may write:

PD = Q(do, - 2In PF)

we have:

(IvV-39)

(IV-40)

(Iv-41)

(IV-42)

(IV-42a)

One can plot Ppy vs. dg as a function of ¢g. This curve is shown in Figure 9./

When the correlation function is stationary, there is a simple expres-
sion for d2 in terms of the various spectra. For simplicity, assume that ths

observation interval is ini.aite.

# Our figure is similar to Figure V-2, p. 155, Reference 2. An earlier refer-

ence is Reference 10.
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Then, Equation IV-29 becomes:

s

gd(t) = f ﬁ(tﬂ-ts)?f(te) de_ (IV-43)

a

-

and Equation 1V-37 reduces to:

=]

2 ~ & ~
do —f q (ta) Sd(ta) dtOL (IV-44)

-

Equation 1V-43 can be solved using Fourier transforms. Transforming,
we have:

- Sd(l) Sd('J.)
Q1) = — = : (IV-45)
Sg0) ~ N + snrm

and using Parseval's theorem:

- 2
& - %] do (1V-46)
o N+S () 2

-0 I

In the absence of reverberation, the receiver is specified by Equation
1V-32 and

2 _l_ ~ ~% _ _ T o
d = N f Sd(t) Sd(t)dt = (IV-47)

2 . . . .
Observe that do is just the S/N ratio at the receiver output.
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C. PERFORMANCE OF CONVENTIONAL RECEIVER

1. General Error Expressions

As we pointed out previously, what we mean by a conventional receiver
is one which is designed under the assumption that the interference is additive
white Gaussian noise. Clearly, when this assumption is correct, the resuiting
receiver is optimum. Whenever reverberation is present, this "conventional”
receiver will not provide the optimum processing. Because the conventional re-
ceiver frequently is far easier toc implement than the optimum receiver, we want
to find out how far from optimum the conventional receiver is.

In this case,
TO = — TO (1V-48)
qC - No \

Under hypothesis H),

T T
x+jy = f ?{'C(t) 'I—o(t) dt =f ?;:(t) ?f.r(t) de (1V-49)
-T -T
T T
12 o~ < ~ -
E; |X+JY| z = f du f dv @ {(u) q(v) E[ro(U) ro(V)] (IV-50)
-T -T
or
[x]+var [y] 2 T Td§‘<>”s‘<)“ri( v=20° (Iv-51)
Varx+ary=~—[ u[ v u \' u, ¥\ = 20 -5
N d d r ¢
° T -T

Then, in a manner identical to that used to derive Equations IV-33,
1v-38, and IV-39, we obtain
A2
0 -
P. = exp - — (1v-52)

20°
C
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Under hypothesis H,,

i
]
24
~~~
o
[e9}
| |
._"1
—
-
S’
[S—
o
~

X+ 5y -
-T
T ) - 2Er 2
_ R -4 2> - _ I o]
_f No Sd(t) Sd(t)e dt No e
-T
or
7E
X = —— cos3
N 3
o}
and
2E
- r . .
V = - sin 3
"o
Then
ZEr 2 2E 2 \
x—-ﬁ;-cosﬁ + y-—ﬁo—sins
Py (yl2)=—s exp - | :
1 2mc 20,
28 V2 2E
2 2 r r “ LA
X +y +{ ==} -2-— (xcos S+ysin?)
N N
I: 1 o o)
p}{ (X,y “)-f 2 €Xp 2
1 ms, 20,
|
36
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(Iv-33)

(Iv-54)

(IV-35)

(IV-56)

(I'v-37)
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Pd(i) = /[ Py (x, v} =) dx dy (IV-38)
J 1
R> -
Changing to polar coordinates and integrating, we have:
) ZEr\Z 2E_
© o - . [ R
| X iz+ No/ 2 N Z cos (% - 3)
P.(3) = —— f dz f dc - Z exp -{ 2 (IV-39)
d 2 2 ‘
2C 23
C ‘\0 (o] Cc
\
The answer is not a function of 3, so we have:
2 2E 2
L7 z°+\ 2E Z
P . =— f ZdZexp - { ————— } 1 (IV-60)
d _2 2 o 2
% - 20, Ne
° \
Just as in the case of the optimum receiver, we must express Py in
terms of the Q function.
Now
@ ] (X + 0.3)_
Q@,3) = fx e 2 Io(ax) dx (Iv-61)
. Z . . . .
Lettingg — = x in Equation IV-60, we obtain:
“c
2E 2
© 2 + r
X [Nooc 2E_ 28 A
= - —————— —_— = — —_— V-62
P f x dx exp { 5 “o "o, x{=Q No_ 5 (IV-62)
Ny -
';z \
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2E 2
2 I
9 [mean of output | H1 ] [ No
d = E— ! = (IV-63a)
c variance of output o2
c
Then, we may write
Ao
Pd = Q dc, o—c- (IV-63b)
Using Equations IV-52 and IV-63b, we may write:
Pd = Q (dc’ - 2In PF) (IV-63c)
Thus, the quantity d c completely characterizes the performance of the conven-
tional receiver.y/ Fo: a given PF’ we may use Figure 9.
We now want to obtain some simpler expressions for dg for the sta-
tionary and the non-stationary cases.
2. Stationary Case
For the stationary, infinite interval —-ase. a simple expression can be
obtained in terms of the various spectra.
For the stationary case, Equation IV-31 becomes
o =L [ awlawdws,mR @-v) (IV-64)
¢ NZ d d T
)
7/ This was pointed out by C. Boardman, M.I.T.
38
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From Equation III-36,

ﬁ (u-v)=YE{'Z|2}
n 2 av
r q q
Defining,
t - < -j.l)t
Sd(ﬂ) de(t)e dt
and
5_@) = f R e Mt
Then,

2 _ 1 Hjuy 2 . tjwiy av
UC = N2 ffdue Sd(u)fove bd(v) Sr(u:) =
o}

Using Equation IV-66, we obtain:
2 1 [ av i 2
o = — — IS, (v) l S (w)
c 2n i d r
x,

-Qv

Now, from Equation II-31

Sr(w) = No + Snr(w), where Snr(w) = F [R(ta-ts)]

39

~ 1 ~ .-
Mu) (u-v) Rf(u—v) -51 Mx (u-v) Rf(u-v) (IV-63)

(Iv-66)

(IV-67)

(Iv-68)

(IV-69)

(1v-70)

Arvthur D Little. Inc.




Using Parseval's rtheorem, we have

2E
2 _ r 1 dw 2
i | 2,01, o av-71)

x
-0

(&)

From Equation 1V-63, we obsexrve that

conv.

2E
r
° o= i IV-72)
dC = = ( = )
1 dw 2
e f Elsml?s ¢
ro o r
3. Tvaluation of d2 for Non-Stationary Case

From Equations IV-351 and III-31, we observe that:

N rc
0

2 r 1 L~ ~ 2 2
= — — : : , L. - = a -
O + f( d(ta) S 4 (ta) Rn (£, t) de dt, =9 + (Iv-73)
qu o r

For our parnct.lar problem, the desired signal is an attenuaicd replica
of the transmitted envelope f(t) which has been shifted in {requency and dei.yed
in time.

S.() = 4 2E. Tm (IV-74)

and

- +|J.1df
S.(t) = ZEr f(t-Td) e

40
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I'hen, Ve 1S:
2E -t +jat
~ ~ 2
erc = _NTr fj? t, -1 (tg-7y) Rt .t)e da "d dt_d- (IV-75)
o
From Equation IIT-23:
2
. o Ef1zi% o 5 ,
R(ta,t,j) = (th) 3 fa(x) Mx x(tGL ta.x)f(ta x) (& x) dx (1V-706)
We recall that
Vi +Hu(t -t,)
ML x (ta-ta:X) = f P, |x (w:x) e d av-77)
al %

We have:
2
4EtEr%E{|zl‘§ (
~ - - * ° ‘~* - - -
Ste = 2 ffj dt_ce, dx dv £ () 1T - )T %)
"o

7(t3 -x) a(x) pwq x(l:x)

exp % -jw dta+p'dt3 +j¢)ta - jr,ut3 & JV-78)

41
Arthur B Aittle. Inc.

P T o O . gt TENE




e

[PV

. rare

e .
DL QRSN SR S SR TGPV PR A e i ]

we have:
we have:

1 2
4EtEr-—E“Z‘ }

2
2

A
"

fdxfdi a(x) pL ‘((.L:x)
ql

N2
o}
g T . e 1 oy
_[dtat(tCl x) f (ta -d) expg ]ta(J.d L)‘
fd‘; (-0 £, - ) exp gﬂ't: Gy —m)‘ (1V-79)

First, observe that the fourth integral is just the complex conjugate of
the third integral. Second, observe that the third integral is idertical (except for
a phase shift) to the two~dimensional correlation function defined in Equation III-
24. With these observations, we have:

r T - s . ,
-/dtaf(ta x) £ (tc -d) exp ; Jta(ld J,)%

jdta‘f’*(ts-x) f(ts—fd) exp 3+jt_:_ (Ld-‘.!.}) %

= l g (Td-x; Ld-L) I 2 = 'x'(Td-x; ,.,d-j,) (IV-5§0)

Observe that we normalized f (t), so that T (0,0) = 1.

Equation IV-80 is just a definition of the signal ambiguity f{unction.
See, e.g., Woodward (Reference 1) or Siebert (Reference 9).

Next, we observe that the term a (x) P, X(L:x) is just the joint prob-

ability density of the scatterers in delay and Doppler.

42
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We will call this the scattering function
A
s (x;+) = a(x) P, x(Lv:x) (1v-81)

q

Substiruting Equations 1V-80 and IV-81 into Equation IV-79, we have:

,

; e{lz|?}
Nz fdx fdﬂ s(xw) ¥ (Td - X; wd-w) (IV-82)
o

2
Orc (Td;md) =

2
Therefore, for the conventional receiver Oy (T4:¥q) can be expressed
as a two-dimensional convolution of the reverbe~~tion scattering function and the

signal ambiguity function. /

Combining Equations 1V-82 and IV-73, we have:

{ |z’ e, 1

i
02 = L 1+E f dxdbs(xb)x('f -X; W, -w) (IV-83)
c No No ' d

From Equation 1V-63, we have:

2E
X

! N
d = (1vV-84)

2
—b{IZ|
1 + ffdxdbs(xw, (“r - X3 % '\”)

-
-

In this section, we have derived the structure of the optimum receiver.
We observed that the output S/N ratio, dg, provided a reasonable characteriza-
tion of the receiver performance. Frequently, the structure o. the optimum

# This particular form is not new. Westerfield and Stewart (References 14 and
i5) obtain a similar relation. Green (Reference 16) describes its application
to radar astronomy.
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receiver is complex or requires knowledge that might not be available. In this
case, one commonly uses a conver.ionai recetver. We observed that the per-
formance depended on two parameters d2 and O.. To keep the subsequent work
from getting immersed in details, we decxded to use the single parameter d’ as
a basis of comparison. The principal results that we will use in the subsequent
work are Equation IV-44 (and its various modified forms; e.g., Equations IV-46

and 1V-47) for the optirnum receiver and Equations [V-72 and IV-84 for the con-
ventional receiver.

In the next section, we will derive some general properties relating to
signal design and processing in the presence of non-white Gaussian noise. After
deriving these properties we will return to the reverberation problem of interest.
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In the preceding ~ections, we have formulated the detection problem in
the presence of reverberation. The pertinent results can be summarized briefly.
The optimum veceiver formulated 1 test statistic

T'
S = /E () T (v) dt (V-1)
-T

where E(t) is the solution to the integral equation.

T

Sd(ta) =/ RnT(ta’tB)Q(tB) dt‘3 -T <ta<+T {V-2)
-T

2
The performance of the system depends on a quantity do' where

T
2 _ ~#
d0 —[ q (v) Sd(t)dt (V-3)
-T

When the interference has a "white” spectrum, i.e.,

R ) (V-4)

then
~ l Ll
() = 1 S,) (V-5)
o
and
2E
2 r
d0 = No (V-6)

The performance depends only cn the received energy and not on the
signal shape.
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2
For any other spectrumn, d depends on the signal shape. In this section,
we derive several properties regardmg signal design.

A. PROPERTY I

The performance of the optimum receiver is minimized by choosing the
complex envelope of the signal, Sd (t ). equal to the eigenfunction of the noise
with the largest eigenvalue.

The proof of this statement is as follows. For any threshold 4,, the
performance of the optimum receiver is monotone in dg, where

T
2 ~
d = f q (1S, (1) dt (V-7)
-T
and
T
Sd (ta) = f R“T (ta’ts) q(ts) dt{3 -T< t'l <T {V-8)
-T
Expand E (t,) using the eigenfunctions{ of ’ﬁn (tc:’t 2
~ T -
(t)‘Z q¢(t) (V-9)
i=1
where the ¢i (t) satisfy the integral equation
T
2 ~
° ¢k (ta) = f R"T (tfl,ta) dk (ts) dt9 (V-10)
-T

Substituting Equation V-9 into Equation V-8 and using Equation V-10,
we have:

S,@) = > 4,0 6, © (V-11)
i=1

f See Reference 7.
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! Equations V-11 and V-12 imply
% T2
"k
! Now,

L 3
S,

d2=f ‘2 4 ol 1T ssmf a
o) (.=1 02 i j=1 3]
T (! i

Similarly, we could expand §d(t»'1) using the eigenfunctions

(V-12)

(V-13)

(V-14)

Integrating and using the orthonormality of the eigenfunctions, we have:

[5(°

i

2

o.
i

2 @
d =
o i=21

(V-15)

2
Now, the sum of the| S| © is twice the energy in ine signal.

— w 2
214:r = 21 I sil
l:

(V-16)

Denote the largest eigenvalue by oi. Then clearly di is minimi zed by

setting:
1Sy ] 2 _ E

B. PRGPERTY 2

ceiver is identical to the conventicnal receiver.

If, Sd(ta) = «/ZEr ¢L (ta)

> ATBRETRHAR AN RO F et N G sk

47

(V-17)

(V-18)

If gd(t) is chosen to give the minimum value of dg, the optimum re-

(V-19)
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Then, Equation V-§ becomes:
T
. - -~ b 7-'
“/ZEr gsL (tl) / RnT (tq, t:) qQ (te) dta (V-20)
-T
From Equation V-9, we see that:
o 1
qty) = —5— 8, (t)) = — S, (t) (V-21)
L L

Q

which is, of course, the conventional receiver.

C. PROPERTY 3

If the conventional receiver is used for all signals, S (t), the minimum
performance is obtained when Sd(t) is equal to the eigenfunction of the noise with
the largest eigenvalue.

The proof is analogous to that of Property 1.

D. PROPERTY 4

If R, (t , t ) is a positive-definite correlation function corresponding

to a process with flmte variance and the gsk(t) are a complete orthonormal set, then
there is no unique Sd(t) that maximizes d2

The positive-definiteness implies therc are no zero eigenvalues in the
expansion of the noise. Since the ¢ (t) are a CON 1/ set there is an infinite number
of eigenvalues. Thus, there is no smallest one. This means that one can suc-
cessively increase d?- by choosing Sd(t) equal to eigenfunctions with successively
smaller exgenvalues

# Complete orthonormal.

48
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The intuitive meaning of this statement should be clear. Suppose
RnA (t;.ty) = 0. Then, if we consider the typical noise spectrum shown in

Figure 10, we see

‘ Sﬂf(f): Sng(f)

2o

(2717 ) 2+l

—p- {

FIGURE 10 TYPICAL NOISE SPECTRUM

4

that the eigenfunctions are of the form:

g (t) =k cosab t -T<t<T
n il n

and the eigenvalues are of the form::

2 1

c =

2
+
4a(l+b)

Where
2 2 2 2
bl<b2<b3 < <bn
Thus,
gl >0§>...>gn

(V-22)

(V-23)

(V-24)

(V-25)

Now, as we take successively smaller eigenvalues, the corresponding
eigenfunctions are cosines of successively increasing frequency. Thus, we can
make the system perform arbitrarily well by transmitting a signal of arbitrarily

high frequency.

# See pp. 99-101 of Reference 7. Note that there are also eigenfunctions of the
form k;, sinab t. An identical argument holds for these eigenfunctions.
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This fact was obvious from the shape of the noise spectrum. The lim-
itation here is a practical one rather than a mathematical one.

Observe that if we allow processes with infinite variance, Property 4
is not true.

As an example, consider the spectrum shown in Figure 11

ﬁSr (£}

Nyt 20

2 (217124 o2

> f

FIGURE 11 AN EXAMPLE OF NOISE SPECTRUM WHEN PROCESSES
HAVE INFINITE VARIANCE

This spectrum has a smallest eigenvalue,

02 =L g% ._T _ 1 (V-26)

4a (1 + bi)

However, since this type of spectrum will not anise in our work,
Property 4 will be valid.

In our problem, the noise correlation function is determined by the
transmitted signal.

R (t,t) =R (,t)+ R (t,¢,) (V-27)
nt 1" 2 nA i’ 2 nR 17 2
T
R = 2N + M 3 g dx
Rn’r (tl' t2) = ouo(tl-tz) a(x) " lx(ta-ts.x) (ta-x).. (ts-x)
ST 1 (V-28)
50
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Thus, as one changes the signal shape, one changes E"T (tl, tz). There-

fore the problem of finding the worst signal shape is difficult for the general case.
Moreover, when the correlation function is specified by Equation V-28, one can not
always satisfy Equation V-19. We will confine ourselves temporarily to some
simple scattering functions and signal shapes. Clearly, the reason we are con-
cerned with the worst signal shape is that it tells us what characteristics we wait

to avoid in our signal. After finding the minimum, we can show how the performance

improves as we move away from the minimum,

In Section VI, we will consider a staticnary reverberation return. In Sec-
tion VII, we will consider a non-stationary retura. In each case, we will evaluate
the performance of the optimum and the conventional receiver as a function of the

signal shape and scattering function.
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VI. GAUSSIAN SIGNALS, UNIFORM REVERBRERATION

A. ASSUMPTIONS OF THE MCDEL

In this section, we apply the results of the precading sections to a
specific situation. From our discussion in Sections III and IV, we observe that
to evaluate the performance of the conventicnal receiver in a uniform reverbera-
tion environment we need the signal shape and the distribution in Doppler of the
scatterers.,

1. Signal and Receiver Properties

We will assume that the velocity of each scatter is a zero-mean
Gaussian random variable,
Thus, x2
1 B
p, X) =~ e (VI-1)
D V27 B

where B is the rms Doppler shift.

£

To use Equation I1I-36, we require the characteristic functicn:
B2 <2

M (T)=e ° (VI-2)

We will assume that the transmitted signal has a Gaussian envelope and
linear frequency modulation.

Thus,
-atz-'bt2 jL~t
57 = Re [k e Pt e ] (VI-3)

The complex envelope is:

2 2
-at  -ibt

T = ke (VI-4)

# Observe that B depends on the rms scatterer velocity and the carrisr frequency
of the transmitted signal.
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The amplitude and instantaneous frequency are shown in Figure 12, We

observe that the pulse duration is infinite, This is an idealization which makes
the analysis appreciably simpler.

Since -
© 2 ‘
= f|f(t)| 26t = K> /e -2at g oo 22T (VI-5)
2./ a
We have:

% 2
2 a \- 2a
k = 4Et (—2-;1—) = 2Et (—n-) (V1-6)

To evaluate the performance, we need the Fourier transform of the
complex envelope.

. A 2 2
rs - -3 + 1t
F (ju) = 2[-:% (—;’?)‘ f 73t TIbt *jut, (VI-7)

Completing the square:

2

- 2
F(jv) = exp - e —= (2 T_r) [ exp - (a+Jb)[t - i t- o 2:,dt
4(a+jb)” 4(at+jb)

(VI-8)
Iutegrating, we have:
2
2/ a\: —_— 1 W
F{j ) 2E ( ) ’-\/2’-7 exp - ———+
2 @(a+ i) 4@a+ib)’
3
% 2 a% wza wz- j 1b
= 2B M 2 exp - o+ 2B hjean a
2(a +b) J 4(a+b) 4@ +b)
(V1-9)
53
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If we define:

2 .2
L= ‘;b ) (VI-10)
we may write:
2 ]
Py 1 . -
F(jw) = 2E§(2n)‘ T33 ep- —;-”l,—+j[w2———2b——2— - #tan IEJ
(2 5% ° 4(a“+b%)
(VI-11)
The magnitude squared is:
2 P 2
a2 & 1 wo 2n o
!F(’u')l =4E - (2m :5 exp - 57 = 2E, (l\. ) 9T
(VI-12)
As a simple check on the coustant, we observe uat:
f |G| ® L - 28 (IV-13)
27 t

Now, the correlation function Rf('r) is simply the inverse transform:

=+

R 27 ¢ wz dw A‘rz
R f 2, (‘) Py PRI TR ey
(VI-14)
F..om Equaticn IV-65, we have (for the stationary case):
av
R (T) = —2— M ()R (T) (VI-IS)
nR wD f

Substituting Equations VI-1 and VI-14 into Equation VI-15, we have:

] 1,2 2
Rn {n = Et . Iavexp —E(B +48) T {VI-16)
R
Let v = B + A (V1-17)
55
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Then
) Y2’2
Rn (T) = Et . ]av exp - -—2_-- (VI-18)
r
and the reverberation spectrum is:
2E_ .1 — 2
s () = —L 8 J2Zmo oo W (VI-19)
n 2 v 2
R 2y
Using the conventional matched filter, we have:
P - )’
lF(jw-jw )|2 = 2E -—%Iﬂ-— exp - D (VI-20)
D r L2 22

2. Evaluation of Conventional Receiver

To evaluate the conventional receiver, we siriply substitute Equations
V1-19 and VI-20 into Equation IV-72, This gives:

2E \2
T
(o]

d =
< ® 2
ZEr+__l_ . JI oxp - (.!.-LD) . 2Et-lav J2n exp--;{'i d
N(3 N(Z) T &§ 2 2 v 2\,2 2%
(VI-21)
or
+= 2 -1
2 1 -
d2 = Er H.Et_l_a_‘i-—wl—— fexp - {(" ”D) + w?- } duw
c No N ﬁtv 2A 2v2
- (VI-22)
56
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Collecting terms and completing the square, we have:

o (VI-23)

iR R R S R G e s R e eliacid)

~ _
— 2
J2m L 2 J2m w ds
3 JIFe-mp| e S ew - | 5T
2Y
where
Y2 = 82 + A (VI-24)

Evaluating the denominator, we have:

® 2
E -1 (w-w) 2
den. = 1+ -—t——f‘—'— fexp - —-ﬁ”-D—- exp - —w—z—dm (VI-25)
N 4=y 2y
o -
. I
Letting £ = (VI-26)
N
o/2

and collecting terms and completing the square, we have:

@ 2
den. = 1*»—17Ets ’/‘exp-—Eer—ZA w - B2+A dw
ZNOA v 26(824» ) 82+2A
wé
- exp - > (V1-27)
2(B™+21)
Integrating, we have:
2
E 8 2 2 & w
J2m A +
den. = 1+ ; 2n2 (B QA) exp - ‘—79—— (Vi-28)
240%-V (B +24) 2(B +24)
57




Ttis expression reduces to:

EtB J2n wlz)
den. = 1+ 5 3 exp - — (VI-29)
2(B” + 24) 2(B"+24)
Now consider the behavior as a function of Wy B, and 4.
For B # 0, this can be rewritten as:
E,8./27 1 u,lz)
den. = 1+ . exp - — (V1-30)
2B % 2/ 24
2A 2B {1+ —
(l+ —é" BZ
B
We observe that the ratios of importance are:
_u_zq : The ratio of the target Doppler shift to the rms
B reverberation Doppler shift
and
J?A;" . . . o
: The ratio of the effective bandwidth of ti.e signal

B to the rms reverberation Doppler shift.

To maximize dg, we want to minimize the second term in EquationVI-30.
The first coefficient is a function of the environment and the transmitted energy.
Considering this constant, we want to study the behavior of the function:

w = & 3

D J24 )_ ( ZA)

f( , = {1+=2) exp + (VI-31)
B B 52 232(1+ ZA)

The curve is showa in Figure 13 ./

# One observes the similarity between Figure 13 and Figure 1 cf Reference 14.
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The minimum value of f ( BD R ZB - )occurs when
m2
A
_274_= -—ZD- -1 wy <B (V1-32)
B B
= 0 wD <B
At the minimum:
w & w 2
(-2, L28°) | 65T oy f1+ 22 (Vi-33)
B B B B2

Clearly the importance of the term given by Equation V1-31 depends on
the value of its coefficient in Equation VI-30.

To study this effect, we substitute Equation VI-30 into Equation VI-22:

, G :
dnc ~ 3E = 5 (VI-34)
r/N J_b
0 1+D ! exp -
2 L\% p 2 24
(1 + _i') 2B (1+-—2-)
B B
where
EtB S 2am
D = ——p— (VI-35)

Physically this represents the reverberation-to-ambient-noise level in
the reverberation bandwidth.

Recall thay 8 = N, Thus, D = T/T T

The denominater is simply the noise power out of a filter with a
Gaussian spectrum when the input is white noise of spectral height N, /2- From
Equation III-32, we observe that the numerator is just the total received power.
Thus, D is the reverixiation-to-ambient-noise ratio.
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The physical meaning of dﬁc shoull be clear. In the absence of rever-
beration it equals 1.0. A decrease to a value of less than 1.0 represents the loss
in detectability due * reverberation.

We have plotted dﬁcfor the following parameters:

D Physical Meaning Figure
0.3 reverberation < ambient noise 14
1.0 reverberation = ambient noise 15
10.0 rev./amkbient noise = 10 db 16
100.0 rev./ambient noise = 20 db 17

The parameters on the curves are #y/g. This is the ratio of the target
velocity to the reverberationh Doppler.

1
The horizontal axis is #2/B. This is the ratio of the signal bandwidth
to the reverberation Doppler.

Several observations may be made with respect to this class of signals:

a. For zero target velocities, we have monctone improvement as the
bandwidth increases.

b. For non-zero target velocities, one can use either very smail or
very large bandwidth signals. The point of the exact minimum is a function of
Wp,/B 38 given by Equation VI-23.

c. For small &, the non-zero target velocities, the improvement in-
creases rapidly. However, for large 4, all targets behave the same.f

Now we consider the optimum receiver,

# This statement is, of course, for the class of signals that we are considering
(i.e., linear FM and Gaussian envelopes). It should be emphasized that this
statement is not true for all signals.
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B. PERFORMANCE OF OPTIMUM RECEIVER

We will use the same assumptions as in the preceding section. Now,
from Equation IV-46, we have

x

2
S (’”)‘
2 ‘ d dw
% —/ N +ST (W) 27 (VI-36)
© ° nr

Substituting Equations VI-19 and VI-20 into VI-36, we have:

—_— (w-w )2
J2m D
» 2E ex - —_—
2 ro ’ { 28 } dw
J2w { 22 } 2m (V1-37)

N+EI——
\Io tI y P 2\,2

This can be rewritten as:

2 2Er Aé 22 dws
b TN E3 2w (V1-38)
o t” ./2n 52
- l+—2— exp 4§ —7r
2Y
For arbitrary parameter values, one cannot obtain a closed form
solution. We will first consider the case where the reverberation is small.
1. Perturbation Solution (Low Reverberation Levels)
Consider the case when
ES8
t J2m -
—— v << (VI-39)

In this, the denominator can be expanded in a serics which is absolutely con-
vergent.

e
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Then,
2E (s - )2
d2 N 1 exp |-
o N() J2uh 24
E& 7= 2 B 2
1-(_5: “/zﬂ)exp - -0—(.5t ./211) exp %- 29 %
Y
2 Y 9 2 2 2~{2
E 8 1\ 2
- (-1) (—-— 1—2Y——- exp g- "_“’Ez+ dw
2Y
(VI-40)
2E
The first term is just N—r , the conventional filter result.
o
The second term is
2E ;., -8 (w-w ) 2
(12(2)= Nr . —_1 . /211 /ex ; ) w2 dw
° o .J2mA 2Y
(VIi-41)
Completing the square and integrating, we have:
2
- 8 /21 .
2 o - 2E_ . ) . E 8 V2n Aé e - wy
° N" " e 2 Y @yt 2B2+ 20)
2
2 . PR t
“Er Et 8 JInm '”D
\~n ) 2 7§ P - 3 (Vi-42)
o (B +24) 2(B +24)
Similarly, the (nt+1)st term is:
a 2
2E E8 = (w-w 2
di(nﬂ): - l_é( — ‘/Zy“) /exp - ZAB - “‘”2 dw  (VI-43)
o J2TuA J 2V
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Completing the square and integrating, we have:

i
2 . n e
2 2B (BB A -n"v 0 n
d (ntl) = — 5 = 3 F ey Ty
o (B +(n+1)L) B +(n+l) 2
(VI-44)
Then,
-] n 2
2 2Er n E8 X W 0
dz’N—‘Z(‘” 2y 2 : P55
o &% (B” +(n+1)2) B 4+ (n+1) £

(VI-45)

Using the same type normalization as previously we can write: (for B#0)

2

2 L

d2= ..Er L. EtB J2m 1 _l ”_D i
o N 2B ¥ P 3\B 24

o 24 - 1+——-—)
(1+-—2—\) BZ

n EtB J27 i
ot D 7B (‘ L L\ ol (1) L\E

w
1 D n
exXp - 5( B ) (1) 2 (V1-46)
14—
B
We observe that the first two terms of the series are identical to a series

expansion of dg

2E EtS J2n .

cT N 1T v 2 toee (VI-47)
C

which is the signal-to-noise ratio at the output of the conventional filter.
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Several observations may be made by examining Equation VI-46:

a. As :é_ - =, the performance of the conventional and that of the

B
optimum filter will approach each other. Physically, this means that a signal

whose bandwidth is much greater thar the reverberation Doppler tends to elimin-
ate the reverberation disturbance.
)

b. As — -, the performance of the conventional and that of the
optimum filter will approach each other. Physically, this means that if the target
Doppler is much greater than the reverberation Doppler, the effect of the rever-
beration is reduced.

ES Jam
2 Y
the optimum filter will approach each other. This is just the obvious fact that as
the reverberation strength goes to zero, the optimum filter becomes the conven-
tional filter.

c. As - 0, the performance of the conventional and that of

These observations really indicate when the effects of reverberation are
not important. Now consider the case for arbitrarv reverberation levels.

2, Arbitrary Reverberation Levels

. . 2 .
Now we consider the general case. The normalized dopt is:

2
® J2n - u)D)
a2 3 P 4 28
d2 A _0o _ A 7 _ dw (VI-48)
no  2E_ EtB 5 w2 2n
—_— 1+ ———exp |-
No o 2 Y 9 v2
Lettingx = E’%—- and rewriting, we have:
A
.2
-] 1 r wD/B
r exp §y- E X - A%/B
¢t = L , = dx  (VI-49)
no /7% 2 8 J2m ) T
e 1 F 7B A & exp { - 3 5
) 1+ B
B h
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We observe that the quantities of importance are:

a. wD /B : ratio of target Doppler to reverberation Doppler
% N : .
b. £/B : ratio of effective signal bandwidth to reverberation
___ Doppler
Ete J2n
c. ——— %D : ratio of the total reverberation power level to
2B . . .
the noise power level in the reverberation
bandwidth .

The integral in Equation VI-49 was evaluated numerically for several
cases., The results are shown in Figures 18 and 19. We observe that the curves
have the same general characteristics as the curves for the conventional receiver.
For D = 0.3 and 1.0, the quantitative difference in the performance is insignifi-
cant and the curves are the same as those in Figures 14 and 15. However, for
D =10 and 100 (i.e., reverberation/ambient noise ratios of +10 and +20 db), there
are appreciable differences in some cases.

Let us examine the effects of these differences. To demonstrate the
method of comparison, consider a specific example, in which the parameters are:

1 / =
a. '”D’B 5.0
b. 1%/ = 1.0
c D = 100.0

For this set of parameter values;

. .
s 48 = g,

oo o .
. ‘wwnnaumvﬁf“mMﬁ"L A A e

-

dio = 0.762 (V1-30)
and
dic = 0.528 (VI-51)
1 Etl N0 2
# Recall that 8 = . Thus, D= / g
N, 2 2 | 7

The denominator is simply the noise power out of a filter with a Gaussian spec-
trum when the input is white noise of spectral height N, /5. From EquationIII-32,
we observe that the numerator is just the total received power. Thus, D is the
reverberation-to-ambient-noise ratio.
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One's first reaction is that since the difference is about 1.5 db, the value of an

antimum filtar ic cuestionahla ”n\nnunr thic comnaricon ic enmewhar mig-

o A L e L L i A L A )

leading. lLet us assume that we require a given d2 to obtain adesired performance

level. Denotc this required q2 by d‘2 Assurne that, with the above param-

eters, the optimum system prowdesr the required df. . Thus,
d - —— = d (VI-52)

Now we want to find how much we must increase the trans:nitted signal
energy to achieve the same d2 with conventional processing. If we increase the
transmitted energy by a factor k, we have:

= E -5
Erc k “ro (V1-33)

and

tc = k Eto (VI-54)

From Equations VI-34 and VI-48, we have:

z 2Ero
dno N = (VI-335)
o
1 +Dk -
For the above case:
2
4o
k = r (VI-56)
1-d¢2 D 1 exp - - “/8
no \E P73 . 2

( % 1+2A/B

142

\ BZ 4

(Ifitis impossible to achieve the required df. by increasing the transmitted energy,
Equation VI-54 may have a negative solution. Clearly, k .must be positive to be
meaningfu:.)
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Evaiuvating, we obtain:
k = 2.45 (+3.9db) (VI-37)

This increase in energy required when a conventional receiver is used
instead of an optimum receiver gives a more accurate picture of the cost of non-
optimum processing. The difference in the two results occurs because as the
transmitted energy increases, the reverberation return also increases. Thus,
for high reverberation levels, one cannot combat the reverberation by raising
the energy level.

The conclusions to be drawn from this section are two-fold:

a. The most important step in combating reverberation is proper signal
design. This signal design can be accomplished using a conventional receiver.
As pointed out in Section V, one will not achieve a unique maximum. The allowable
range of signal parameters will be governed by such factors as available bandwidth,
pulse duration, sound path stability, and other system constraints. The choice of
signal will also be governed by what range of target velocities is of interest.

E. The second step is to consider how much one would gain by using an
optimum receiver instead of a conventional receiver. One must examine the

specific situation to see if the added complexity is warranted.

Now we want to conduct a similar analysis for the non-stationary case.
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A. CONVENTIONAL FILTER ¢

tion. First, evaluate the ambiguity function.

oy Lo PR AL, e ARyt N

From Equation III-24, we have:

b

In this section, we consider the performa .ce of conventional and opti-
mum receivers in the presence of non-uniform reverberation. As discussed in
Section 1II, if the distributicn in range of the scatterers is non-uniform, then the
reverberation return will be a sample function from a non-stationary Gaussian
process. We consider first the conventional filter performance. In this section,
we restrict curselves to pulses with Gaussian envelopes and linear FM.

As pointed out in Section IV, to evaluate the conventional receiver, we
require the ambiguity function of the signal and the scattering of the reverpera-

$0
- S(r,w) = f T (t- -T?:) T ( +-;-) e Pt dt (VII-1)
e -
I For a Gaussian puise,
- 3
% N 8;1!3;'2 2
' % "’ ZEt f() = pes exp { -(a+jb)t } (V1I-2)
]
z First, let b = .
' ﬁ Then, substititing Equation VII-2 into VII-1, we have:
E :
1 e\ F
: 8,0 = \— f exp % -aft-3) -a(+y) - %dz (VII-3)
T 75
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Completing the square and integratinz:

3 2
el’T, )y = - _aT_.- ‘.2._ Vil-
(T,w) 2Et exp g 3 ” % (Vil-4)
Then,
2 2 v
Y(T,w) = |8(T,w)| = 4}_?,t exp 3- a'l'2 " i (VI1-5)
Normalizing,
A ¥(T,w) 2 W
WD E Yoo T P o -5 % (Vil-6)

A sketch of the ambiguity function is shown in Figure 20.

For b # 0, we obtain:f

2 2
2 at W - 2bT1)
Q H = - - -
8 (1,w) 4Et exp 3 5 2a % (VI1-7)
and
2 (w- 2137)2
‘:'nl_T,w) = €exp g-aT S e (VII-8)

The equal ampl{tude lines for the linear FM cases are shown in Fig-
ure 21.

7/ One can either evaluate the integral or use Theorem 4, Siebert (Reference 17).
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We assume that the scattering density is a skewed Gaussian density.

22 2_2
1 1 B - 2B Z+LZ
s(x,Z) = exp - 3 X -~ Lp x (VII-9)
2 2
2n\ll-pu3 BL(1-p)
The simplest case is p = 0 (no skew). NS
Then,
2 2
- 1 Ll fx 2 ]
s(x,Z) = 5B exp x 2 L2 + Bz (VII-10)

Substituting Equations VII-6 and VII-10 into Equation 1V-84, we have:

et SED SN OGN0 N W e ped ) S bed ed e ed Sed O O GO !

2E,
2 No
d = N 5
y sE{lzl®te
1+ S ffdxdns(x,w)‘i’(‘fd-x;wd'w)
(o)
1 2
26_| sEellzlE, AR
S Jlo o mmew -3 (=%
o L B
-1
2 (‘”d'w)z
exp -a(Td-T) e (VII-11)
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Evaluating, we have:

1 2
2E - E s

2, r 2h“zl}bt 1 1
A ey = == {1+ )
c d d N N Vi 3

o} o} 2 1 2

L +— R +2a
2a \

-!-2 2 .l
1 d d
expy| - 5 31 + 3 (VII-12)
L™+— B +2a
2a
First look at the hehavior of dczzonv (0,0) as a function of a.
The worst case is when
_ B b
a = 5L - a, (VII-13)
Then,
1 2 -1
) 2E_ EE{ Iz] }Et |
= = —arn + -
dc (0,0) No 1 No TR (VIil-14)

A convenient way to examine the behavior of dg onv (0,0) for other a
is to define:

B

BL- X3, (VII-13)

N
-
&

d (0, 0)

and examire 1In _Lomw____
2}31_/1\30

ne>

2
In dnc (0,0) (VII-16)
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Thus,
\
1 2
) s E{lZI"}E, |
-ind” (0,0) =+ In{1 + .} (VII-17)

ne No 3 BL 2

(1 + kBL)? (1 +—k-)

\

1
2

1
In Figure 22, we plot (1 + kBL)? (1 + B—kl:) as a function of k for

BL = 1. Since the function is symmetric (on a In scaie) about k = 1, we need to
plot only k2 1. Observe that the nearer to one the value cf this function, the
better the system performance.

In Figures 23, 24, 25, and 26, # we plot dlzlc (0, 0) for various values of
% E{lzl?le

N , BL, and k.
o
For non-zero 7 D and wD’ we want to choose ato make the term
1 2 2 2
— T t
; EHIZITIE, 1 oxp | - . D_, “D
- 22
No 2 1Y (.2 \ 2 L2+L Bz+2a
L+ %2 \B +2a 2a

as small as possible.

As before, there is no unique minimum. There is a worst value of a.
This worst value is a function of 8, L,wp, and Tpp. There does not seem to be a
simple analytic expression for the worst value.

Similarly one can use the expression in Equation VII-8 for the am-
biguity function of a Gaussian pulse with linear FM.

7/ The optimum filter result is also plotted. This will be derived in Section
VII-B and discussed at that time.
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B. OPTIMUM FILTER

To find the optimum filter, we must solve the integral equation de-
rived in Section 1V:

sd(ta) = f (t ,ts) q(t ) dt (VII-18)
where
R = & (+ - -
Rr(ta’ts) No \ta t8)+ R (t t) (VII-19)
and
t +t
L sEUZIY (2%
- 2 e - q - . - <Y
n (:a tg) 3 = fS( W ta ts) £ (ts ta,U.)e dw (VII-29;
SEUzZIY) 2 AT
ﬁ‘ (t.ta)-‘:‘;'z . lexp-§-4t2l(82+a)+ 71 R
n X v 2 211 X = —
r 4 (L2+—!— 4(1. +4a)
IR T
(5
f
. 2 1 , .
Tt (BT +a) c — {VlI-Z1)
*3 sf1?+ L
4a
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Tc solve the integral equation;, we wiil expan
bi-orthonorinal expansion.

A suitable series can be obtained from Mehler's expansion, / which is:

2 2 2 21> H (x) H (y)
— L e |- XY fpxy = -%:[exp -5 %] Dt (vi22)
2,-,41_33 2(1-0") o nH? @)’

b B R m ) ST

o l<1
where Hn (x) is the ! Hermite fuaction.
i Since
1 ; Xz
—_ - = = p! =
\I—Z? me(x} Hn(x) exp > dx = n! n=m
- 0 otherwise (VII-23)
A suitable set of orthonormal functions are:
1 x2
@n(X) = 5 I Hn(x) exp §- 7 } (VII-24)
; (27)" (n!)
From Eguation VII-22, we obtain the desired expansion:
1 2405y +y2 (1457 - 1 =
: x {(1+5 ) - $px n -
! N o)ty (Lt A P ® (x) @ (y) (VII-25)
"277(1'92)5 4(1"{3 ) =0

i We observe that all of the eigenvalues of the Gaussian kernel are
specified by a single number p.

7/ See Reference 18. Our approach here is related to that in Reference 19.
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Now we want to expand En (ta, t.) as given by Equation VII-21 into a

r
series of the form of Equation VII-25.

Introduce two new variables:

C:Z = 82 + a (VII-26)
2
D> - ____21__. (VII-27)
4 (L + L
(' 4a)
Then,
1 yJ
§ (t.,t) = 1 —Z-E{lZl : 4DE exp - = gtz(C2+Dz)+t2(C2'Dz)
a8’ 2 N
. NES t 2 )a 3
2 2
- 2tat8(C -D) 2 (V1I-28)
Now let x = tJ, y =1t 0 and solve for J and p such that Equation
VII-28 is identical to Equation VII-22.
We obtain
_~ C-D
° = CTD (VII-29)
o = A VII-30
~ 4CD (VII-30)
After a little algebra, we obtain:
1 2 2 k
sE{Izl"} 8aE _— =
2 t vV 2m C-D)}| . .
R, Gt = 7 2 ;Z ——§C+D; )Y ) (VI-3D)
m(l+4aLl) } (C+D) k=0
Arthur D Little Inc.
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where

oy - H_ [ta [4cD] ’ ] exp{ - :i CD} ViL-32)

1 Yy 4
1 2 4 1
(n')* (2m) ( 4__CD)

Including the white noise term, we obtain from Equations VII-19 and

VII-31:

R = b (t - Ky )y -
R (1) = N ot -t + Krkz-% 2T 1), @) (VI1-33)
where
1 2 2 %
~e{lzl*y 8aE
K_ = 2 : L v 2m (VII-34)

m(1+4al?) (C+D)?

~

Now we define an inverse to Rr (ta,t ).

-~

~ - C s . T 2
er(ta, ta) rr(ts,tY) dt3 (taL tY) (VII-33)

It is easy to verify that:

__l_ - -_1- __L._w v -
) TR G D e o

-~
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R KrP n
Cn: N n o - N
N +K. n,_o
; K
r

(VII-37)

Multiply both sides of Equation VII-18 by r (t t.) and integrate.

This gives:

~

f r r,t)dt ff (t,t)R (t t)q(t)dt dt

which reduces to:

-

q(ta) = f Sd(ta) “r'r(ta,ts) dtB

Substituting Equation VII-36 into VII-39, we obtain:

PN N RN , .
q) =5 S, -5 2 CnYn(ta)f.n(tE) s, (t.) di

!n(ts) Sd(ts) dt8

"
=
ne
h‘_\a
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(VII-38)

(VII-39)

(VII-40)

(VII-41)
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Then,

~ 1~ 1 =
£ = — - — ‘:‘ V -
q(q) No Sd(ta) No n§=l: Cn r n(t}) (VII-42)

which specifies the optimum detector. It is simply a band pass filter whose
complex impulse response is matched to q(t).

To evaluate the performance., we recall from Equation 1V-44 thai:

2 ~
< = * - 43
do f Sd(tc.) q (ta) (VII-43)

Therefore, using Equation VII-42, ws obtain:

! @ -

1 ~ L~

- - 2 r ¥ -

d No de (tc.) Sd (ta) dtc. mpe] “n'n f n(ta) Sd (ta) dt& (VII-44)
-

o N

=o

which reduces to:

2E =
a‘:') = = - Rl_ > cnlrn|2 (VII-45)
o} o n=l

Now, the an (t) are a CON set, so we may write:

=

3,6 =nz=:0 oY () (VII- 46)
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which 1mplies:

= @
f§d(t ) g;(ta) dt =n§) lrn |2 = 2E_

-

(VII-47)

Since the cigenvalues are monotones decreasing with increasing n, it
follows from Property 1 of Section V that d2 _ is a minirnum when

opt

ro= 0 n#£()
or
Sd(ta) = ro :o(t'l)
We see that this implies:
1
2 2
[16a (B +a )]
w w

2
exp{-awt }—expw ; T
[14-43 L
w

or

. - B
w 2L

)

(ViI-48)

(VII-49)

(V1I-50)

(VII-51)

From Properties 2 and 3 of Section V, we know that Equation VII-31
must be identical to Equation VII-13. In other words, the worst signal is identi-

cal for the conventional and optimum receiver.

To evaluate the errnr for the worst case, we must compute C, and ry-

From Equations V1I-37 and VII-47, it is clear that:

r=‘/'z—é'
0 r

93
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[¢]
2 L (VII-53)

@]

1

z
|02

D""k—g 1+
r

and from Equation ViI-34

lE{|2|2}E

_ 2 t -
Kr = BL 71 (VII-34)
Then,
2 2E:r ]
dOW = —I\—I— [1 - CO (VII-DD)
o
2E
r
N
- Y (VII-36)
AE
fat 1
N BL +1
o

Equation VII-56 gives the same result as Equation VII-14 since the

filters are identical.
For the general case, the optimum filter and the conventional filter
will be different. To evaluate the error, we must sum the series given by Equa-

tion VII-45.

Writing a = kaw, we have:

1
2
2k l (VII-37)

1 1 11
[(k + 2BL)? (1 + k2BL)? + k'?_‘_P

E{|z|2}E

~
1§
ST
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and

1
(k + ZBL)% (1+ kZBL)é - x?

—

Niee y

1 -
(K + 2BL)’ (1 + k2BL)" + k

an

x

rn =f :n(t) Sd(t) de

-tlas

Now,

and

¥ (v)
n

where

3
™o
1c-
|tn
=
(L]
®
-
+
-
Led

25 B 1
3L Y @+ 2BLD)

95

(VII-538)

(ViI-39)

(VII-60)

(VII-61)

(V1I-62)

(VI1-63)
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Then,

-
0

(16E%} o ; 2 2
r : - -
ro= L ‘ o an [t[-&CD]Q]e tCDAt e (vin-64)
: 2 1 \s
12 2 [ _ 1 i
(n!)” (2m) (4CD) -
1
Letting x = t [4CD]?, this reduces to:
1 L & °
E)* (2" a* €D)* , f 2
r = - T = J Hn(x) exp { - —— ] dx (VII-63)
(n")? (a + CD)? VALY 20
wher
2 & 2CD
S = T oD (VI1-66)
Denote the bracketed term by Gn ©):
G (o) = —— H (x) exp {- — | dx (VII-67)
n 7o n 20
Substituting intc Equation VII-45, we have:
2E \ 3,2 G2 (o) C
d2 __r ) 2a’ (CD)* n T (VII-08)
o N {a + CD) n!
o} n=0
Using the structure of the Hermite functions,s we can find an expres-
sion for Gp(0).
¢ See Cramer, Reference 20.
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First, we evaluate G, {Y) for n = 0,2, *.6 «nd deduce the expression
)
x’orarbitrary n.

Hermite Functions (in ©)
= 1 ‘Y = 1
HO(X) Go( )
Ho‘x) = x> - 1 G.(5) =3 -1
2 \ )( 2 ~' -
H4(x) = x4 - 6x2 + 3 G4(:) = 3(3s - 1)2
Hé(x) = x6 - 15x.1 : 45x2 - 15 Gb(-‘) = 15(32 - 133 (VII-69)
Looking at the sequence, we see that
n
G (55 = LINN [02 - 1} 2 n even (VII-70)
n n
n 2
—_ 1
(2)‘ 2)
=0 n odd
and
.1 = LD-2 (VI1-71)

CD+ a

Observe that for < = 1,

"
[

VIL-72
G, (1) (VI1-72)

1l
—
<

Gn(l) n#0

which corresponds to the case, k = 1.
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Cn = - NO (VII-73)
o + T(-—
r

From Equations VII-57, VII-6Z, and VII-63 we have:

2 % z~:{|z|"‘}rat . D
K_ = =5 (VII-74)
and
. C-D -
2 = 5 (VII-75)

Substituting Equations VII-74 and VII-75 into Equations VII-73 and
VII-68, we have:

( \
. 2
2:EllzI®1E, . )
- ,’ \ _
“n N i 2l ez YE ne1 | (Vi-70)
° 2 t, (C+D)
No DC-D)
% LR R
2 6} 2a° (CD) (2m)! 2 2m
& = =0, 2D X NN et (VII-77)
/N ) 2
o 2E /R (a + CD) m=0  (m!2m) ™
where we have set m = % since the odd terms in the series were zero.
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We have evaluated the sum for the following paramcter values
1 2,
. 3EUZIT)E ,
.
~ = 1,10, 100
N 1+BL T

0

2. BL = 0.1, 1, 10, and 100

The result dzzw is plotted s a function of k in Figures 23 - 26.

separate curves are not shown, dgo is approximately equal to dfxr'

Also tabulated in Equaticn VII-14:

2 1
nc 1 2';
ZE{lzl,Bt
N 1+ BL
(o]

1+

When

(VI1-78)

(Vii-80)

From the tabulation, we observe that there is very little difference be-

)
tween dﬂo and dlec' There are several reasons for this result:

i. The most impertant reason is that we have considered oniy the case
where the target has zero velocity. As shown in Figure 27, the target is exactly

at the peak of the scattering function.

If the target had a non-zero velocity or were displaced in range from
the peak of the scattering function, the difference between the optimum and con-
ventional receiver would be larger. This is because the optimum filter uses its
knowledge of the reverberation scattering function to partialiy "tune out™ the
reverberation. For the case we considered, the largest amount of reverberation
was in the same range-Doppler location as the target. Thus, the optimum filter
For
targets away from the peak, the optimum filter can use its knowledge more ef-

could not tune out the reverberation peak without also tuning out the target.

fectively.
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2. A second reason is that the particular scattering funct:on we have
chogen is smooth in hoth directions. One of the advantages of 4 non-stationary
model is that it uses the nen-uniform distribution of scatterers along the path
of sound wave to improve 1its detection capability. Intuitively, one would think
that the more non-uniform the distribution is, the more useful knowledge of it
would be. Thus, our choice of a smooth scattering function tends to negate the

e‘fect of an optimum filter.
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GLOSSARY

attenuation of target return
length parameter of Gaussian pulse

intensity functions; average number of scatierers per unit
time

rms Doppler shift (reverberation)
frequency parameter of Gaussian pulse
S/N ratio; conventional receiver

S/N ratio; optimum receiver
received energy

transmitted energy

complex envelope (?(t) = u(t) ej¢ (t))

nth Hermite function

Modified Bessel function; first kind; order zero

amplitude

rms length of scattering function

characteristic function of scatterer Doppler shift
characteristic function of scatterer velocity a:q is a random
variable, x is conditioning variable

height of ambient noise spectral density (double-sided)

actual additive noise
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complex envelope of additive noise

actual reverberatior return

complex envelope of reverberation return
probability of detection

probability of false alarm

probable density of scatterer Doppler shift
Marcum's Q function

actual returned signal

complex envelope of returned signal

real part

complex envelope of desired signal

Fourier transform of S q (v)

complex envelope returned from nth scatterer
Fourier transform of R (t)

transmitted signal

characteristic function of joint scattering dencity
delay due to nth scatterer

actual envelope

complex number which is the magnitude and phase of return
phase shift of target return

scatterers per unit time (uniform case)
9_2 + b2
a
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likelihood ratio
a value of likelihood ratio
th
n  eigenvalue
phase of transmitted signal
th . .
n  eigenfunction
two-dimensional correlation factor
target range (delay in signal returnj
carrier frequency

target Doppler shift
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prrcess

UNCLASSHTED

UNCLASSIFIED

Femmmmmmmmmmmomae

UNCLASSIFIED

UNCULASSIHIED

l-l-|I-l..lllll-l-.llunll-I-||||‘nl.l"l-l..l|||||ll.ll-l.'l.l"'.lalnlll"'llu'd

- S D S e Gy G5 D D G G D D G GS D R B e P S e

Accessing No.

AD.

Arthur . Little, lnc,. Cambridgé #, Massachusetts

OFTIMUM SIGXAL DESICN AND PROCESSING FOR REVERBERATION-
LIMITED EXVIRONMENTS

(Frupect Trident Technical Report 15011064) October 1964

Contract NOhsr-+1563)

The problem of designring opimum signals and receivers for an active
sonar system an a reverheration-limited environment i3 studied. A
suttable mude! of the reverberation return 1s developed. The return
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